Sobolev's inequality for Riesz potentials of functions in central Herz-Morrey-Orlicz spaces on the unit ball

Yoshihiro Mizuta Department of Mechanical Systems Engineering Hiroshima Institute of Technology 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan Email:y.mizuta.5x@it-hiroshima.ac.jp

Abstract

The space introduced by Morrey in 1938 has become a useful tool for studying the existence and regularity of partial differential equations. Our aim in this talk is to establish Sobolev's inequality for central Herz-Morrey-Orlicz spaces on the unit ball.

We know Sobolev's inequality :

$$||I_{\alpha}f||_{L^{p_{\nu},\nu}(G)} \leq C||f||_{L^{p,\nu}(G)}$$

for $f \in M^{p,\nu}(\mathbf{R}^N)$, $0 < \alpha < \nu \leq N$ and $1 , where <math>I_\alpha$ is the Riesz kernel of order α and $1/p_\nu = 1/p - \alpha/\nu$ ($< 1/p - \alpha/N = 1/p^*$).

Now we consider a weighted condition on f such as

$$\int_{0}^{2} \left\{ \omega(r) \|f\|_{L^{p}(A(0,r))} \right\}^{q} \frac{dr}{r} < \infty \qquad \text{when } 0 < q < \infty,$$
$$\sup_{0 < r < 1} \omega(r) \|f\|_{L^{p}(A(0,r))} < \infty \qquad \text{when } q = \infty,$$

where ω is a doubling weight, $1 and <math>A(0, r) = B(0, r) \setminus B(0, r/2)$ is the annulus. If this is the case, then we write $f \in H^{p,\omega,q}(\mathbf{B})$ which is called a central Herz-Morrey space on the unit ball **B**. Note here that $H^{p,\omega,p}$ is a weighted L^p space.

To establish a general result, in the Orlicz settings, we give Sobolev's inequality for Riesz potentials of functions f in central Herz-Morrey-Orlicz spaces $H^{\Phi,\omega,q}(\mathbf{B})$.

In the borderline case $\alpha p = N$, we study the L^p integrability result, instead of Trudinger's inequality. Among them, we give

$$\int_{\mathbf{B}} \left\{ |x|^{-\alpha} (\log(e/|x|))^{-1+\theta} |I_{\alpha}f(x)| \right\}^{p} dx$$

$$\leq C \int_{\mathbf{B}} \left\{ (\log(e/|y|))^{\theta} |f(y)| \right\}^{p} dy$$

for $\theta < 1/p' = 1 - 1/p$, as in the paper by Edumunds and Triebel, 1999.