The Carleson type embedding inequality for dyadic rectangles

Hitoshi Tanaka
Tsukuba University of Technology

In this talk we introduce the Carleson type embedding inequality for dyadic rectangles and consider some of its applications.

We denote the set of all dyadic rectangles on \mathbb{R}^n by

$$D_R(\mathbb{R}^n) = \{2^{-k}(m + [0, 1)) : k, m \in \mathbb{Z} \}^n.$$

We denote by P_i, $i = 1, 2, \ldots, n$, the projection on the x_i-axis. For $R \in D_R(\mathbb{R}^n)$, $I \in D(\mathbb{R})$ and $j = 1, 2, \ldots, n$, we define the dyadic rectangle

$$R_{I,j} = \left(\prod_{i=1}^{j-1} P_i(R) \right) \times I \times \left(\prod_{i=j+1}^n P_i(R) \right).$$

Theorem Given a weight σ in \mathbb{R}^n and $1 < p < q < \infty$, the following statements are equivalent:

(a) The Carleson type embedding inequality for rectangles

$$\sum_{R \in D_R(\mathbb{R}^n)} \sigma(R)^{q/p} \left(\int_R f \, d\sigma \right)^q \leq c_1 \left(\int_{\mathbb{R}^n} f^p \, d\sigma \right)^{q/p}$$

holds for all nonnegative function $f \in L^p(\sigma)$;

(b) The testing condition

$$\sum_{I \subset P_j(R)} \sigma(R_{I,j})^{q/p} \leq c_2 \sigma(R)^{q/p}$$

holds for all $R \in D_R(\mathbb{R}^n)$ and $j = 1, 2, \ldots, n$.

Moreover, the least possible constants c_1 and c_2 enjoy $c_1 \leq Cc_2^n$ and $c_2 \leq c_1$.

In this talk we introduce the proof of this theorem, which is due to Professor Yabuta, and give its some applications.

Research and Support Center on Higher Education for the hearing and Visually Impaired, National University Corporation Tsukuba University of Technology, Kasuga 4-12-7, Tsukuba City, Ibaraki, 305-8521 Japan