[[[[[ List of Publications -- Eiichi Nakai ]]]]]
Japanese
[[[[[ book ]]]]]

  1. Editors Akihiko Miyachi, Eiichi Nakai and Masami Okada, Harmonic Analysis and its Applications, 2006, Yokohama Publishers.
    ISBN 4-946552-20-0

  2. M. Hasumi, H. Oka, N. Sakakibara and E. Nakai, Introduction to Calculus (Japanese), Uchida R\^okakuho, Tokyo, 1998.
    ISBN 4-7536-0095-5

[[[[[ papers ]]]]]

  1. Eiichi Nakai, Pointwise multipliers on Musielak-Orlicz-Morrey spaces, Function Spaces and Inequalities, Springer Proceedings in Mathematics & Statistics 206, to appear.

  2. Wei Li, Eiichi Nakai and Dongyong Yang, Pointwise multipliers on BMO spaces with non-doubling measures, Taiwanese Journal of Mathematics, (Advance publication: 17 August 2017) Project Euclid DOI: 10.11650/tjm/8140

  3. Eiichi Nakai, Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition, Science China Mathematics, Volume 60, Issue 11, November 2017, 2219--2240. (First Online: 06 September 2017) SpringerLink DOI: 10.1007/s11425-017-9154-y

  4. Eiichi Nakai and Gaku Sadasue, Characterizations of boundedness for generalized fractional integrals on martingale Morrey spaces, Mathematical Inequalities & Applications, Volume 20, Number 4, 2017, 929--947. Ele-Math doi:10.7153/mia-2017-20-58

  5. Eiichi Nakai and Gaku Sadasue, Some new properties concerning BLO martingales, Tohoku Mathematical Journal, Volume 69, Number 2, June 2017, 183--194. Project Euclid

  6. Eiichi Nakai, Pointwise multipliers on several function spaces -- a survey --, Linear and Nonlinear Analysis, Volume 3, Number 1, 2017, 27--59. Yokohama Publishers

  7. Eiichi Nakai, Pointwise multipliers on Musielak-Orlicz spaces, Nihonkai Mathematical Journal, Volume 27, Number 1, 2016, 135--146. Project Euclid

  8. Eiichi Nakai and Takuya Sobukawa, $B_w^u$-function spaces and their interpolation, Tokyo Journal of Mathematics, Volume 39, Number 2 (2016), 483--516. Project Euclid arXiv

  9. Dachun Yang, Ciqiang Zhuo and Eiichi Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Revista Matematica Complutense, Volume 29, Issue 2, May 2016, 245--270. (First online: 25 January 2016) SpringerLink DOI 10.1007/s13163-016-0188-z

  10. Denny Ivanal Hakim, Eiichi Nakai and Yoshihiro Sawano, Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz-Morrey spaces Revista Matematica Complutense, Volume 29, Issue 1, January 2016, 59--90. (First online: 08 August 2015) SpringerLink DOI 10.1007/s13163-015-0178-6

  11. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano, Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent, Annales Academiæ Scientiarum Fennicæ Mathematica. 40 (2015), 551--571. Open Access DOI:10.5186/aasfm.2015.4032

  12. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano, Function spaces with variable exponents -- an introduction --, Scientiae Mathematicae Japonicae, Volume 77, No. 2 (2014 August), 187--315. (Scientiae Mathematicae Japonicae Online, e-2014, 153--281. Online)

  13. Hiroshi Ando, Toshio Horiuchi and Eiichi Nakai, Some properties of slowly increasing functions, Mathematical Journal of Ibaraki University, Volume 46 (2014 July), 37--49. J-STAGE

  14. Hiroshi Ando, Toshio Horiuchi and Eiichi Nakai, Weighted Hardy inequalities with infinitely many sharp missing terms, Mathematical Journal of Ibaraki University, Volume 46 (2014 July), 9--30. J-STAGE

  15. Eiichi Nakai and Yoshihiro Sawano, Orlicz-Hardy spaces and their duals, Science China Mathematics, Volume 57, Number 5 (2014 May), 903--962. SpringerLink DOI:10.1007/s11425-014-4798-y

  16. Eridani, Hendra Gunawan, Eiichi Nakai and Yoshihiro Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Mathematical Inequalities & Applications Volume 17, Number 2 (2014 April), 761--777. Ele-Math DOI:10.7153/mia-17-56

  17. Eiichi Nakai and Gaku Sadasue, Pointwise multipliers on martingale Campanato spaces, Studia Mathematica, Volume 220, Number 1 (2014), 87--100. Studia Mathematica arXiv DOI:10.4064/sm220-1-5

  18. Eiichi Nakai, Generalized fractional integrals on generalized Morrey spaces, Mathematische Nachrichten, Volume 287, Number 2-3 (2014 February), 339-351. Wiley Online Library DOI:10.1002/mana.201200334

  19. Yiyu Liang, Eiichi Nakai, Dachun Yang and Junqiang Zhang, Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato Spaces, Banach Journal of Mathematical Analysis, Volume 8, Number 1 (2014 January), 221--268. Open Access arXiv

  20. Eiichi Nakai, Gaku Sadasue and Yoshihiro Sawano, Martingale Morrey-Hardy and Campanato-Hardy Spaces, Journal of Function Spaces and Applications, Volume 2013 (2013), Article ID 690258, 14 pages Open Access DOI:10.1155/2013/690258

  21. Eiichi Nakai and Gaku Sadasue, Maximal function on generalized martingale Lebesgue spaces with variable exponent, Statistics & Probability Letters, Volume 83, Issue 10 (October 2013), 2168--2171. ScienceDirect DOI:10.1016/j.spl.2013.06.007

  22. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano, Hardy spaces with variable exponent, Harmonic analysis and nonlinear partial differential equations, 109--136, RIMS Kokyuroku Bessatsu B42, Res. Inst. Math. Sci. (RIMS), Kyoto, August, 2013.

  23. Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano, The Hardy-Littlewood maximal operator on Lebesgue spaces with variable exponent, Harmonic analysis and nonlinear partial differential equations, 51--94, RIMS Kokyuroku Bessatsu B42, Res. Inst. Math. Sci. (RIMS), Kyoto, August, 2013.

  24. Yoshihiro Mizuta, Eiichi Nakai, Yoshihiro Sawano and Tetsu Shimomura, Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials, Journal of the Mathematical Society of Japan, Volume 65, Number 2 (April 2013), 633--670. Project Euclid DOI:10.2969/jmsj/06520633

  25. Yasuo Komori-Furuya, Katsuo Matsuoka, Eiichi Nakai and Yoshihiro Sawano, Applications of Littlewood-Paley theory for $B_{\sigma}$-Morrey spaces to the boundedness of integral operators, Journal of Function Spaces and Applications, Volume 2013 (2013), Article ID 859402, 21 pages. Open Access DOI:10.1155/2013/859402

  26. Yasuo Komori-Furuya, Katsuo Matsuoka, Eiichi Nakai and Yoshihiro Sawano, Integral operators on $B_{\sigma}$-Morrey-Campanato spaces, Revista Matematica Complutense, Volume 26, Issue 1 (2013 January), 1--32 SpringerLink Open Access DOI:10.1007/s13163-011-0091-6

  27. Hendra Gunawan, Eiichi Nakai, Yoshihiro Sawano and Hitoshi Tanaka, Generalized Stummel class and Morrey spaces, Publications de l'Institut Mathematique, Volume 92 (2012), 127--138. Open Access DOI:10.2298/PIM1206127G

  28. Hiroshi Ando, Toshio Horiuchi and Eiichi Nakai, Construction of slowly increasing functions, Scientiae Mathematicae Japonicae, Volume 75, No. 2 (August 2012), 187--201. (Scientiae Mathematicae Japonicae Online, e-2012, 207--221. Online)

  29. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in $\mathrm{R}^n$, Revista Matematica Complutense, Volume 25, Number 2 (2012), 413--434. SpringerLink DOI:10.1007/s13163-011-0074-7

  30. Eiichi Nakai and Gaku Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, Journal of Function Spaces and Applications, Volume 2012 (2012), Article ID 673929, 29 pages Open Access DOI:10.1155/2012/673929

  31. Eiichi Nakai and Yoshihiro Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, Journal of Functional Analysis Volume 262, Issue 9 (1 May 2012), 3665--3748. ScienceDirect DOI:10.1016/j.jfa.2012.01.004

  32. Eiichi Nakai and Tsuyoshi Yoneda, Bilinear estimates in dyadic BMO and the Navier-Stokes equations, Journal of the Mathematical Society of Japan, Volume 64, Number 2 (April 2012), 399--422. Project Euclid doi: 10.2969/jmsj/06420399

  33. Takashi Miyamoto, Eiichi Nakai and Gaku Sadasue, Martingale Orlicz-Hardy spaces, Mathematische Nachrichten, Volume 285, Issue 5-6 (April 2012), 670--686. Wiley Online Library DOI:10.1002/mana.201000109

  34. Yoshihiro Mizuta, Eiichi Nakai, Yoshihiro Sawano and Tetsu Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces, Archiv der Mathematik, Volume 98, Number 3 (March 2012), 253-263. SpringerLink DOI:10.1007/s00013-012-0362-6

  35. Katsuo Matsuoka and Eiichi Nakai, Fractional integral operators on $B^{p,\lambda}$ with Morrey-Campanato norms, Function Spaces IX (Krakow, Poland, 2009), 249--264, Banach Center Publications , Vol.92, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2011. Banach Center Publications DOI:10.4064/bc92-0-17

  36. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, Sobolev's inequality for Riesz potentials in Orlicz-Musielak spaces of variable exponent, Banach and Function Spaces III (Kitakyushu, 2009), 409--419, Yokohama Publishers, Yokohama, 2011.

  37. Eiichi Nakai, Orlicz-Morrey spaces and their preduals, Banach and Function Spaces III (Kitakyushu, 2009), 187--205, Yokohama Publishers, Yokohama, 2011.

  38. Haibo Lin, Eiichi Nakai and Dachun Yang, Boundedness of Lusin-area and $g_{\lambda}^*$ functions on localized Morrey-Campanato spaces over doubling metric measure spaces, Journal of Function Spaces and Applications, Volume 9 (2011), Issue 3, 245--282. Open Access DOI:10.1155/2011/187597

  39. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Variables and Elliptic Equations, Vol.56, Issue 7-9 (July 2011), 671--695. Taylor and Francis Online DOI:10.1080/17476933.2010.504837

  40. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, Hardy's inequality in Orlicz-Sobolev spaces of variable exponent, Hokkaido Mathematical Journal, Vol.40, No.2 (June 2011), 187--203.

  41. Eiichi Nakai and Tsuyoshi Yoneda, Riesz transforms on generalized Hardy spaces and a uniqueness theorem for the Navier-Stokes equations, Hokkaido Mathematical Journal, Vol.40, No.1 (February 2011), 67--88.

  42. Haibo Lin, Eiichi Nakai and Dachun Yang, Boundedness of Lusin-area and $g_{\lambda}^*$ functions on localized BMO spaces over doubling metric measure spaces, Bulletin des Sciences Mathematiques, Vol.135, No.1 (January-February 2011), 59--88. ScienceDirect DOI:10.1016/j.bulsci.2010.03.004 arXiv

  43. Lech Maligranda and Eiichi Nakai, Pointwise multipliers of Orlicz spaces, Archiv der Mathematik, Vol.95, No.3 (September, 2010), 251--256. SpringerLink DOI:10.1007/s00013-010-0160-y

  44. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, Journal of the Mathematical Society of Japan, Vol.62, No.3 (July, 2010), 707--744. Project Euclid DOI:10.2969/jmsj/06230707

  45. Eiichi Nakai, Singular and fractional integral operators on Campanato spaces with variable growth conditions, Revista Matematica Complutense, Vol.23, No.2 (July, 2010) 355--381. SpringerLink DOI:10.1007/s13163-009-0022-y

  46. Shigehiko Kuratsubo, Eiichi Nakai and Kazuya Ootsubo, Generalized Hardy identity and relations to Gibbs-Wilbraham and Pinsky phenomena, Journal of Functional Analysis, Vol.259 (July, 2010), 315--342. ScienceDirect (Open Archive) DOI:10.1016/j.jfa.2010.03.025

  47. Yan Meng, Eiichi Nakai and Dachun Yang, Estimates for Lusin-area and Littlewood-Paley $g^*_{\lambda}$ functions over spaces of homogeneous type, Nonlinear Anal., Vol.72, No.5 (March, 2010), 2721--2736. ScienceDirect DOI:10.1016/j.na.2009.11.019

  48. Eiichi Nakai and Tsuyoshi Yoneda, Construction of solutions for the initial value problem of a functional-differential equation of advanced type, Aequationes Mathematicae, Vol.77, No. 3 (June, 2009), 259-272. SpringerLink DOI:10.1007/s00010-009-2965-y

  49. Yoshihiro Mizuta, Eiichi Nakai, Takao Ohno and Tetsu Shimomura, An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$, Hiroshima Mathematical Journal, Vol.38 (2008), 425-436. Project Euclid

  50. Eiichi Nakai, A generalization of Hardy spaces $H^p$ by using atoms, Acta Mathematica Sinica, Vol.24 (2008), 1243--1268. SpringerLink DOI:10.1007/s10114-008-7626-x

  51. Eiichi Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Mathematica, Vol.188, No.3 (2008), 193--221. Studia Mathematica DOI:10.4064/sm188-3-1

  52. Eiichi Nakai, Calderón-Zygmund operators on Orlicz-Morrey spaces and modular inequalities, Banach and Function Spaces II (Kitakyushu, 2006), 393--410, Yokohama Publishers, Yokohama, 2008.

  53. Eiichi Nakai, Recent topics of fractional integrals, Sugaku Expositions, American Mathematical Society, Vol.20, No.2 (2007), 215--235. Osaka Kyoiku University Repository

  54. Norio Kikuchi, Eiichi Nakai, Naohito Tomita, Kôzô Yabuta and Tsuyoshi Yoneda, Calderón-Zygmund operators on amalgam spaces and in the discrete case, Journal of Mathematical Analysis and Applications, Vol.335 (2007), 198--212. ScienceDirect DOI:10.1016/j.jmaa.2007.01.043

  55. Eiichi Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Mathematica, Vol.176, No.1 (2006), 1--19. Studia Mathematica DOI:10.4064/sm176-1-1

  56. Shigehiko Kuratsubo, Eiichi Nakai and Kazuya Ootsubo, On the Pinsky Phenomenon of Fourier Series of the Indicator Function in Several Variables, Memoirs of Osaka Kyoiku University, Ser.III Natural Science and Applied Science Vol.55, No.1 (2006), 1--20. Osaka Kyoiku University Repository

  57. Eiichi Nakai, Construction of an atomic decomposition for functions with compact support, Journal of Mathematical Analysis and Applications, Vol.313 (2006), 730--737. ScienceDirect DOI:10.1016/j.jmaa.2005.07.072

  58. Eiichi Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and Function Spaces (Kitakyushu, 2003), 323--333, Yokohama Publishers, Yokohama, 2004.

  59. Eiichi Nakai, Recent topics of fractional integrals (Japanese), Sugaku Vol.56 (2004), 260--280. Journal@rchive Osaka Kyoiku University Repository

  60. Eridani, Hendra Gunawan and Eiichi Nakai, On generalized fractional integral operators, Scientiae Mathematicae Japonicae, Volume 60, No. 3 (November 2004), 539--550. (Scientiae Mathematicae Japonicae Online, Vol.10 (2004), 307--318. Online)

  61. Eiichi Nakai, Naohito Tomita and Kôzô Yabuta, Density of the set of all infinitely differentiable functions with compact support in weighted Sobolev spaces, Scientiae Mathematicae Japonicae, Volume 60, No. 1 (July 2004), 121--127. (Scientiae Mathematicae Japonicae Online, Vol.10 (2004), 39--45. Online)

  62. Eiichi Nakai and Shigeo Okamoto, Tangential boundary behavior of the Poisson integrals of functions in the potential space with the Orlicz norm, Scientiae Mathematicae Japonicae, Volume 59, No. 3 (May 2004), 407--428. (Scientiae Mathematicae Japonicae Online, Vol.9 (2003), 187--208. Online)

  63. Eiichi Nakai, On generalized fractional integrals on the weak Orlicz spaces, $BMO_{\phi}$, the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), 389--401, Walter de Gruyter, Berlin, New York, 2002. de Gruyter Reference Global eBook ISBN: 9783110198058

  64. Chikako Harada and Eiichi Nakai, The square partial sums of the Fourier transform of radial functions in three dimensions, Scientiae Mathematicae Japonicae, Volume 55, No. 3 (May 2002), 467--477. (Scientiae Mathematicae Japonicae Online, Vol.5 (2001), 329--339. Online)

  65. Eiichi Nakai, On generalized fractional integrals, Taiwanese Journal of Mathematics, Vol.5 (2001), 587--602. Online)

  66. Eiichi Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Scientiae Mathematicae Japonicae, Volume 54, No. 3 (November 2001), 473--487. (Scientiae Mathematicae Japonicae Online, Vol.4 (2001), 901--915. Online)

  67. Eiichi Nakai and Hironori Sumitomo, On generalized Riesz potentials and spaces of some smooth functions, Scientiae Mathematicae Japonicae, Volume 54, No. 3 (November 2001), 463--472. (Scientiae Mathematicae Japonicae Online, Vol.4 (2001), 891--900. Online)

  68. Eiichi Nakai, A characterization of pointwise multipliers on the Morrey spaces, Scientiae Mathematicae, Vol.3 (2000), 445--454. Online)

  69. Eiichi Nakai, On generalized fractional integrals in the Orlicz spaces, Proceedings of the Second ISAAC Congress, Kluwer Academic Publishers B. V. Netherland-U. S. A., 2000, 75--81.

  70. Eiichi Nakai, Pointwise multipliers on the Morrey Spaces, Memoirs of Osaka Kyoiku University, Ser.III Natural Science and Applied Science Vol.46 (1997), no. 1, 1--11. Osaka Kyoiku University Repository

  71. Eiichi Nakai, Pointwise multipliers on weighted BMO spaces, Studia Mathematica, Vol.125, No.1 (1997), 35--56. Studia Mathematica

  72. Eiichi Nakai and Kôzô Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type, Mathematica Japonica, Vol.46 (1997), 15--28.

  73. Eiichi Nakai, Pointwise multipliers on the Lorentz Spaces, Memoirs of Osaka Kyoiku University, Ser.III Natural Science and Applied Science Vol.45 (1996), no. 1, 1--7. Osaka Kyoiku University Repository

  74. Eiichi Nakai, Pointwise multipliers, Memoirs of The Akashi College of Technology, Vol.37 (1995), 85--94.

  75. Eiichi Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Mathematische Nachrichten, Volume 166 (1994), Issue 1, 95--103. InterScience DOI:10.1002/mana.19941660108

  76. Eiichi Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Mathematica, Vol.105, No.2 (1993), 105--119. Studia Mathematica

  77. Eiichi Nakai and Kôzô Yabuta, Singular integral operators on $L^{p,\Phi}$-spaces, Annali di Matematica pura ed applicata, Vol.153 (1988), 53--62. SpringerLink

  78. Eiichi Nakai, Singular integral operators on $L_k^{p,\Phi}$-spaces, Bulletin of the Faculty of Science, Ibaraki University, Series A. Mathematics, Vol.19 (1987), 71--78. Journal@rchive

  79. Eiichi Nakai and Kôzô Yabuta, Pointwise multipliers for functions of bounded mean oscillation, Journal of the Mathematical Society of Japan, Vol.37, No.2 (1985), 207--218. Project Euclid DOI:10.2969/jmsj/03720207

  80. Eiichi Nakai, On the restriction of functions of bounded mean oscillation to the lower dimensional space, Archiv der Mathematik, Vol.43 (1984), 519--529. SpringerLink

[[[[[ others ]]]]]

  1. Katsuo Matsuoka and Eiichi Nakai, Singular integral operators and $B^{p,\lambda}$ with Morrey-Campanato norms (Banach space theory and related topics), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1753 (August, 2011), 67--76, Kyoto University Research Information Repository

  2. Eiichi Nakai, Gaku Sadasue, Martingale Morrey-Campanato spaces (Banach space theory and related topics), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1753 (August, 2011), 58--66, Kyoto University Research Information Repository

  3. Eiichi Nakai, Predual of Campanato spaces and Riesz potentials} Potential Theory and its related Fields (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1669 (November, 2009), 122--131. Kyoto University Research Information Repository

  4. Eiichi Nakai and Tsuyoshi Yoneda, Convergence of some truncated Riesz transforms on predual of generalized Campanato spaces and its application to a uniqueness theorem for nondecaying solutions of Navier-Stokes equations. The geometrical structure of Banach spaces and Function spaces and its applications (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1667 (November, 2009), 71--79. Kyoto University Research Information Repository

  5. Eiichi Nakai, A generalization of Hardy spaces on spaces of homogeneous type, Recent results of Banach and function spaces and its applications (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1615 (October, 2008), 99--106. Kyoto University Research Information Repository

  6. Eiichi Nakai, Preduals of Morrey-Campanato spaces, Banach spaces, function spaces, inequalities and their applications (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1570 (2007), 46--53. Kyoto University Research Information Repository

  7. Eiichi Nakai, On Orlicz-Morrey spaces, The structure of Banach spaces and Function spaces (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1520 (2006), 78--88. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  8. Eiichi Nakai, Naohito Tomita and Kôzô Yabuta, Fourier multipliers and decomposition of functions by convolution, Communication in commutative Banach algebras and several field of mathematics (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1478 (2006), 116--126. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  9. Eiichi Nakai, Naohito Tomita and Kôzô Yabuta and Tsuyoshi Yoneda, Boundedness of singular integral operators on some Morrey and amalgam spaces (Japanese), Banach and function spaces and their application (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1455 (2005), 128--136. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  10. Eiichi Nakai, Naohito Tomita and Kôzô Yabuta, Extensions of Fig`a-Talamanca's multiplier theorem to Banach function spaces, Banach and function spaces and their application (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1455 (2005), 1--7. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  11. Eiichi Nakai, Orlicz-Morrey spaces and some integral operators, The structure of Banach spaces and its application (Japanese) S\=urikaisekikenky\=usho K\=oky\=uroku No. 1399 (2004), 144--156. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  12. Eiichi Nakai, Hardy spaces and generalized fractional integrals, Harmonic Analysis and Nonlinear Partial Differential Equations, S\=urikaisekikenky\=usho K\=oky\=uroku No. 1388 (2004), 1--22. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  13. Eiichi Nakai, Hardy spaces and preduals of Campanato spaces (Japanese), Harmonic/analytic function spaces and linear operators, II (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1277, (2002), 67--77. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  14. Eiichi Nakai, Generalized fractional integrals, S\=urikaisekikenky\=usho K\=oky\=uroku No. 1201 (2001), 56--74. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  15. Eiichi Nakai, Pointwise multipliers on some function spaces (Japanese), Proceedings of Chowa-Kaiseki Seminar 2000 (Japanese), 99--118.

  16. Eiichi Nakai, On generalized fractional integrals, S\=urikaisekikenky\=usho K\=oky\=uroku No. 1137, (2000), 61--70. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  17. Eiichi Nakai, Pointwise multipliers on Campanato spaces and Morrey spaces (Japanese), Harmonic/analytic function spaces and linear operators (Japanese) (Kyoto, 1998), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1049 , (1998), 1--10. 46E30 (46M35). Kyoto University Research Information Repository Osaka Kyoiku University Repository

  18. Eiichi Nakai, BMO and related function spaces on spaces of homogeneous type (Japanese), Proceedings of Jitsukansuron-kansukaisekigaku godo symposium 36 (1997), 94--123.

  19. Eiichi Nakai, Weighted BMO on homogeneous spaces (Japanese), The structure of spaces of analytic and harmonic functions and the theory of operators on them (Japanese) (Kyoto, 1995), S\=urikaisekikenky\=usho K\=oky\=uroku No. 946 , (1996), 141--151. 42B15. Kyoto University Research Information Repository Osaka Kyoiku University Repository

  20. Eiichi Nakai and Kôzô Yabuta, Pointwise multipliers on $\mathrm{bmo}_{\phi}(\mathbb R^n)$ (Japanese), S\=urikaisekikenky\=usho K\=oky\=uroku No. 523 (1984), 192--207.

2014/2/17
Eiichi Nakai, Ibaraki University

counter