Maximal Function Characterizations of Hardy Spaces Associated with Magnetic Schrödinger Operators

Speaker: Dongyong Yang

Abstract. Let $A := -(\nabla - i\vec{a}) \cdot (\nabla - i\vec{a}) + V$ be a magnetic Schrödinger operator on $L^2(\mathbb{R}^n)$, $n \ge 2$, where $\vec{a} := (a_1, \dots, a_n) \in L^2_{loc}(\mathbb{R}^n, \mathbb{R}^n)$ and $0 \le V \in L^1_{loc}(\mathbb{R}^n)$. In this talk, we establish the equivalent characterizations of the Hardy space $H^p_A(\mathbb{R}^n)$ for $p \in (0, 1]$, defined by the Lusin area function associated with A, in terms of the radial maximal functions and the non-tangential maximal functions associated with $\{e^{-t^2A}\}_{t>0}$ and $\{e^{-t\sqrt{A}}\}_{t>0}$, respectively. The boundedness of the Riesz transforms $L_k A^{-\frac{1}{2}}$, $k \in \{1, \dots, n\}$, from $H^p_A(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ is also presented, where L_k is the closure of $\frac{\partial}{\partial x_k} - ia_k$ in $L^2(\mathbb{R}^n)$ and $p \in (0, 1]$.